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Objective quality evaluation measure of symmetric and

asymmetric distorted stereoscopic images
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An objective quality evaluation measure of asymmetric and symmetric distorted stereoscopic images is
proposed. In the measure, stereoscopic features are first extracted from left and right images by using
singular value decomposition. Then, the relationship between the stereoscopic features and subjective
scores is established by using support vector regression. Finally, the objective evaluation scores are tested
on symmetric and asymmetric databases. Experimental results show that the proposed measure is more
effective in quantifying image quality, compared with other two relevant quality evaluation measures.
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With the development of stereoscopic display and net-
work technologies, stereoscopic imaging technology has
attracted increasing attentions, and has a widespread
prospect of applications[1]. Since stereoscopic content is
acquired simultaneously with two cameras, the amount of
data may be doubled compared to the corresponding two-
dimensional (2D) image However, the occurrence of the
compression induced artifacts, such as blurring, blocking,
ringing and other distortions, will be inevitable. There-
fore, how to quantify the quality of stereoscopic content
is a key problem in stereoscopic video systems.

Extensive works had already been done to develop 2D
image quality evaluation measures, such as Structural
Similarity Index (SSIM)[2] and Singular Value Decom-
position (SVD)[3]. However, still now very few efforts
have been concentrated for stereoscopic images. Benoit
et al. proposed a quality assessment measure for stereo-
scopic images by fusing 2D quality measures and depth
information[4]. Akhter et al. proposed an no-reference
perceptual quality assessment measure for JPEG coded
stereoscopic images based on segmented local features of
artifacts and disparity[5]. However, these measures im-
posed certain assumptions on the relationship between
the objective evaluation scores and the subjective scores,
and human visual system (HVS) probably does not meet
these assumptions.

In addition, the performance of quality evaluation mea-
sure for stereoscopic images may be highly dependent
on specific stereoscopic database. In stereoscopic im-
age/video coding, it is possible to allocate the bitrates
on the two views symmetrically or asymmetrically. Gor-
ley et al. suggested that symmetric stereoscopic image
compression can produce better results than asymmetric
compression[6]. Saygili et al. suggested that symmetric
coding achieved better perceived quality than asymmet-
ric coding below the asymmetry threshold[7]. Therefore,
it is necessary to objectively evaluate the quality of asym-
metric and symmetric coding.

Considering the above two issues, an objective qual-
ity evaluation measure of asymmetric and symmetric dis-
torted stereoscopic image is proposed in this letter. The
proposed measure extracts stereoscopic features from left

and right images by using SVD, and the relationship be-
tween stereoscopic features and subjective score is estab-
lished by using support vector regression (SVR). Finally,
the objective evaluation scores are tested on the sym-
metric and asymmetric database. The outstanding ad-
vantage of the proposed measure is that complex sim-
ulation of perceptual characteristics and mechanisms of
HVS can be avoided and the objective evaluation scores
have a good correspondence with the subjective scores.

SVD of an image I ∈ RM×N can be written as

I = USVT, (1)

where U (with size of M×M) and V (with size of N×N)
are orthogonal matrix, S is M ×N diagonal matrix. The
diagonal elements in S are called the singular values.

The singular values can well characterize the structural
information in an image, and the singular values have
strong stability[3]. In this work, we use the singular val-
ues as the feature basis for the task. The singular value
vector is defined as T = (σ1, σ2, · · · σi, · · · σn), where
n=min(M , N), and σi is the i-th singular values in S.
Thus, feature vector Xl of left image and feature vector
Xr of right image are calculated as

Xl =
∣

∣Tl
org − Tl

dis

∣

∣ , (2)

Xr =
∣

∣Tr
org − Tr

dis

∣

∣ , (3)

where Tl
org and Tl

dis are the singular value vectors of the
original and the distorted left images, respectively, and
Tr

org and Tr
dis are the singular value vectors of the orig-

inal and the distorted right images, respectively. Since
the quality differences between the left and right images
can ultimately affect the stereoscopic perception, the fea-
ture vector X of a stereoscopic image can be expressed
as a linear combination of the feature vectors Xl and Xr

X = wlXl + wrXr, (4)

where wl and wr are the weights for feature vectors of
left and right images, respectively.

In this letter, we formulate image quality prediction
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as a regression problem and use SVR to find a mapping
function between the features and subjective scores[8].
The feature fusion procedure is conducted in two phases:

1) Training phase: Suppose that Xp is the feature
value vector of the p-th stereoscopic image pair in the
training set, and yp is the corresponding difference mean
opinion score (DMOS) (p=1, 2, · · · , pm; pm is the num-
ber of training image pairs). The purpose of ε-SVR is
to map the original data space into a high-dimensional
feature space, and form the best linear function in the
high-dimensional feature space. The linear function is
described as

f(X) =

pm
∑

i=1

wi · k(X, Xi) + b, (5)

where k(X, Xi) is a kernel function, w={wi, i=1, 2,
· · · , pm} is a weight vector, and b is a bias term. The
aim of SVR is to find the unknown parameters w and
b from the training data such that the error is less than
a predefined value denoted by insensitivity parameter ε.
In the experiment, we have used the exponential radial
basis function (ERBF) as the kernel function with the

form of k(X, Xi) = exp(−

√

||X− Xi||
2/γ2), where γ is

a parameter controlling the radius.
2) Test phase: With the estimated parameters w and

b from the training phase, the objective score yq for the
q-th stereoscopic image pair can be predicted. However,
the current training and test data should be different.
We employ the fivefold cross-validation strategy to test
the performance of the proposed measure. The data
of stereoscopic images in different types of distortion is
split into five subsets, and one used for testing and the
remaining four subsets are used for training. The exper-
iment is repeated with each of the five subsets used for
testing.

For the experiments, we have used two databases cre-
ated by ourselves. The asymmetric database includes
10 original stereoscopic image pairs from which 370 dis-
torted stereoscopic images were obtained with four types
of distortion: JPEG, JPEG2000, Gaussian blur, and
white noise[9]. Specifically, 70, 100, 100, and 100 dis-
torted stereoscopic images with different levels of JPEG,
JPEG2000, Gaussian blur and white noise distortions
are included in the database, respectively. For asym-
metric database, even though the binocular perception
is dominated by the high quality view with binocular
suppression, the weight value wr is set to 0.5 because the
left image is undistorted in the database.

The symmetric database includes 12 original stereo-
scopic image pairs from which 312 distorted stereoscopic
images have been generated with five types of distor-
tion. Besides the same four types of distortion with the
asymmetric database, H.264 distortion is added in the
database which is obtained with H.264/Advanced Video
Coding (AVC) coding. Specifically, 60, 60, 60, 60, and
72 distorted stereoscopic images with different levels of
JPEG, JPEG2000, Gaussian blur, white noise and H.264
distortions are included in the database, respectively.
For symmetric database, according to the properties of
binocular fusion and binocular summation, the weight
values wl and wr are set to 0.50 for all types of distortion.

The DMOS values are provided for each database by

subjective experiments. In the experiments, twenty non-
expert adult viewers participated in the quality evalu-
ation process, whose ages vary from 20 to 25. All the
participants in this experiment met the minimum visual
acuity of 20/30, stereo acuity up to 40 seconds of arc
(sec-arc), and passed a color vision test. The partici-
pants were asked to rank the stereoscopic images based
on their own judgment. The corresponding test methods
can be found in Ref. [9].

We have compared the performance of the proposed
measure with the most relevant SSIM[2] and SVD[3] mea-
sures. Since SSIM and SVD cannot directly apply to the
evaluation of stereoscopic images, the left and right im-
ages are evaluated separately, and weighted with the
same parameters of the proposed measure. The experi-
mental results are reported in terms of the four criteria
used for performance comparison, namely: Pearson linear
correlation coefficient (CC), Spearman rank correlation
coefficient (SROCC), root mean squared error (RMSE),
and Outlier ratio (OR), between the subjective and the
objective scores. For a perfect match between the objec-
tive and subjective scores, CC = ROCC =1 and RMSE
= OR = 0. We can see from the experimental results
in Table 1 that the proposed measure performs better
than the existing measures in terms of the above four
indicators, because the predicted scores of the proposed
measure have a good correspondence with the subjective
scores.

The results of CC and SROCC for different types of
distortion are presented in Table. 2. Scatter plots of
DMOS (y-axis) versus objective scores (x-axis) is shown
in Fig. 1. The scatter plots for asymmetric database is
shown in Fig. (a), and for symmetric is shown in Fig. (b).
The high accuracy fitting results show the effectiveness
of the proposed measure. It is also shown the extracted
features of the two databases are widely different, espe-
cially for Gaussian blur and JPEG2000. The reason is
that the dependencies of subjective quality on different
distortion parameters for the two databases are widely
different, as can be seen from the accuracy (CC) and the
monotonicity (SROCC) indexes in Table 2.

In order to determine the generality of a machine-
learning based image quality predictor, the cross-
database validation strategy is used in this letter. We
use all the images with a particular type of distortion
from one database for training and use resultant mea-
sure to test all the images with the same type of dis-
tortion in another database. Suppose that Modelsym\asy

denotes symmetric database for training and asymmetric

Table 1. Performance Comparison for Asymmetric
and Symmetric Databases

Database Measure CC SROCC OR RMSE

Asymmetric

SVD 0.7359 0.7976 0.0513 7.8755

SSIM 0.7157 0.8064 0.3297 12.6010

Proposed 0.9447 0.9230 0.0027 4.0971

Symmetric

SVD 0.9069 0.9148 0.0192 7.2375

SSIM 0.8287 0.8543 0.0353 9.6174

Proposed 0.92499 0.93169 0.00641 6.5281
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Table 2. CC and SROCC Results for Different
Types of Distortion

Criteria
Asymmetric Symmetric

Distortion CC SROCC CC SROCC

Gaussian Blur 0.9247 0.8532 0.9302 0.9045

JPEG2000 0.9365 0.7737 0.9355 0.9388

JPEG 0.9066 0.8735 0.8713 0.8982

White Noise 0.9758 0.9496 0.9347 0.8852

H.264 – – 0.8886 0.9038

Fig. 1. Scatter plots of DMOS versus objective scores. (a)
asymmetric database; (b) symmetric database.

Table 3. Cross-Database Validation Performance
Comparison

Distortion\Model
Modelsym\asy Modelasy\sym

CC SROCC CC SROCC

Gaussian Blur 0.9531 0.9046 0.9513 0.9379

JPEG2000 0.7679 0.7287 0.9506 0.9282

JPEG 0.9430 0.8871 0.8272 0.8688

White Noise 0.9537 0.9552 0.8811 0.7868

database for test, and Modelasy\sym denotes asymmetric
database for training and symmetric database for test.
The results for the cross-database validation are pre-
sented in Table 3 (CC and SROCC values are shown).
For Gaussian blur, Modelsym\asy and Modelasy\sym per-
form almost equivalently. For JPEG2000, Modelasy\sym

outperforms Modelsym\asy, and for other two distor-
tions, Modelsym\asy outperforms Modelasy\sym. The phe-
nomenon can be explained by Table 2 that the accu-
racy and the monotonicity of the two databases are sig-
nificantly different for some types of distortion. These

results confirm that the proposed cross-database evalua-
tion is highly dependent on the loss of perceptual quality
of test database and not on the distortion contents of
training database.

In conclusion, an objective quality evaluation measure
of symmetric and asymmetric distorted stereoscopic im-
ages is proposed. The main contribution of the proposed
measure is that the objective evaluation scores have a
good correspondence with the subjective scores by es-
tablishing the relationship between stereoscopic features
and subjective scores. Besides, since the stereoscopic im-
ages are well trained, the objective evaluation scores for
arbitrary stereoscopic images can be automatically pre-
dicted. The experimental results show the effectiveness
of the proposed measure. In order to describe stereo-
scopic visual perception combined with image quality
and depth perception, future research will focus on no-
reference stereoscopic image/video quality evaluation by
fusing more perceptual features.
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